skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Küsel, Kirsten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sideroxydans sp. CL21 is a microaerobic, acid-tolerant Fe(II)-oxidizer, isolated from the Schlöppnerbrunnen fen. Since the genome size of Sideroxydans sp. CL21 is 21% larger than that of the neutrophilic Sideroxydans lithotrophicus ES-1, we hypothesized that strain CL21 contains additional metabolic traits to thrive in the fen. The common genomic content of both strains contains homologs of the putative Fe(II) oxidation genes, mtoAB and cyc2. A large part of the accessory genome in strain CL21 contains genes linked to utilization of alternative electron donors, including NiFe uptake hydrogenases, and genes encoding lactate uptake and utilization proteins, motility and biofilm formation, transposable elements, and pH homeostasis mechanisms. Next, we incubated the strain in different combinations of electron donors and characterized the fen microbial communities. Sideroxydans spp. comprised 3.33% and 3.94% of the total relative abundance in the peatland soil and peatland water, respectively. Incubation results indicate Sideroxydans sp. CL21 uses H2 and thiosulfate, while lactate only enhances growth when combined with Fe, H2, or thiosulfate. Rates of H2 utilization were highest in combination with other substrates. Thus, Sideroxydans sp. CL21 is a mixotroph, growing best by simultaneously using substrate combinations, which helps to thrive in dynamic and complex habitats. 
    more » « less
  2. Liu, Shuang-Jiang (Ed.)
    ABSTRACT Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2 , but only the two FB strains possess the putative Fe oxidase genes mtoAB . The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation. IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape. 
    more » « less
  3. ABSTRACT Sideroxydans sp. strain CL21 is an aerobic Fe(II)-oxidizing bacterium isolated from peat sediment from the Fe-rich, moderately acidic Schlöppnerbrunnen fen (northern Bavaria, Germany). Here, we report the draft genome sequence of strain CL21, highlighting genes involved in Fe(II), sulfur, and H 2 oxidation. 
    more » « less